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A CYCLIC QUEUEING NETWORK

WITH DEPENDENT EXPONENTIAL SERVICE TIMES

by
*
P. A. Jacobs
Department of Operations Research

Stanford University
Stanford, California 94305

0. ABSTRACT

A cyclic queueing network with two servers and a finite
number of customers is studied. The service times for server 1
form an EARMA(1,1) process (exponential mixed autoregressive
moving average process both of order 1) which is a sequence
of positively correlated exponential random variables; the
process in general is not Markovian. The service times for
the other server are independent with a common exponential
distribution. Limiting results for the number of customers
in queue and the virtual waiting time at server 1 are obtained.
Comparisons are made with the case of independent exponential

service times for server 1l.

iSupport from National Science Foundation under grant
ENG~75~-02026 and the Office of Naval Research under grant
NR-42-284 is gratefully acknowledged.
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1. INTRODUCTION

Relatively little is known about queues for which
interarrival times and/or service times are not independent;
some studies are available however (cf. Cinlar [1967],

Loynes [1962), Pearce [1967], Purdue{l975]).
One reason for this seems to be the lack of tractable models

for dependent sequences of random variables. Recently, models
have been developed for sequences of dependent exponential
random variables (cf. Jacobs and Lewis [1977]). These models
are parametrically relatively simple and are in general not
Markovian. Fortunately, it seems to be easy to model various
types of dependence in queues using these sequences.

The dependent sequence of exponential random variables
is defined as follows. Let {en} be a sequence of independent
random variables each with an exponential distribution with

mean 27}

s 0 <) <w, Let {3,} ana {xn} be independent
sequences of independent {0,1)-random variables such that
P{J, =1} = 1-8 and P{K =1} = 1-p where 0 < 8 <1 and

0 <p <1 are fixed constants. For n =1,2,... put

(1.1) X, =8, +JK_, .
where
(1.2) K o=ok _, +Ke, .

T™he SeguUEnce ('h) is called an BEARMA(1,1) process (exponential
ained moving average autoregessive both of order 1) and xn-l
is called the asutoregressive part of xn"

i e atE R
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We will always assume that Ro has an exponential

-1 independent of all the other random

distribution with mean A
variables. Under this assumption, Jacobs and Lewis [1977] have
shown that {xn} is a stationary sequence with exponential

marginal distribution having mean A'l. Furthermore, the xn's

are positively correlated with

corr(x_,X ) = o*"1(1-8) [B(1-p) + (1-8)p] , Kk >1.

If B=1,0or B=0 and p = 0, then {xn] is a
sequence of independent random variables. The process {xn}
is in general not Markovian although it is if 8 = 0, in which
case it is called an EAR(1l) process (exponential autoregressive
of order 1).

In this paper we will consider the simple case of a
closed queueing network with two servers and a fixed number of 1
cycling customers N. It is described as follows: when a customer
finishes service at server 1 he joins the end of the queue at
server 2; when he finishes service at server 2, he rejoins the
end of the queue at server l; the service discipline is first-
in-first-out.

This closed queueing network has been used in computer
studies to model multiprogrammed computer systems (cf. Gaver
and Shedler [1971])) and one is interested in obtaining, for
example, the long run proportion of time one of the servers
is idle, the average expected busy period of one sexver, and
the average time it takes a customsr to complete one cycle
2
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of the network. There is some indication (cf. Lewis and Shedler

[1973]) that the service times for one of the servers should
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be correlated. One object of this paper is to show that
correlation of the service times does make a difference in the
limiting behavior of the network. .

Let sn (respectively xn) denote the nth service
time for server 2 (respectively server 1). There are many ways
in which to use EARMA(l,l) processes to model dependence within
each sequence of service times and cross correlation between
¢ the two sequences. In this paper we will assume that {Sn}

is a sequence of independent random variables each with an

BRI A e b

exponential distribution with mean u-l, 0 < u<eo and {xn}

is an EARMA(1,1) process independent of {s_} with mean A'l,

H
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0 < A < », and parameters B and p. Other queueing models
using EARMA processes will be considered elsewhere.

Let 2(t) denote the number of customers both waiting

S NEREIRGE e te s e

and being served by server 1 at time t. The process
2 = {3(t); t > 0} takes the values {0,1,...,N}. Let W(t)
be the virtual waiting time at server 1 at time t; that is,
W(t) is the sum of the service times of the customers in queue
at server 1 at time t and the remaining service time of the

customer currently being served.

In the next two sections we will obtain limiting results
for S{(t) and W(t) as t + o for the case N = 2, We will
show that the limiting distribution of 2Z(t) in the BARMA
case is the same as in the case in which the service times of
server 1 are independent; this result is also true for the case

3




N = 1 and seems to be due to the constraints imposed on the
network by having only one or two customers. The long run
average virtual waiting time is then computed for the case
N = 2 and is found to be different from the independent case.
This is because the positive correlation between the service
times of server 1 tends to increase the virtual waiting time.

In Section 4 we analyse the network for N > 2 customers
and show the existence of a limiting distribution for Z(t)
as t » ». We then present some simulation results for the
limiting distribution of Z(t) as t + « for the case N = 5,

The results show that the correlated service times do make a

considerablz difference in the limiting distribution.

2. THE TWO CUSTOMER CYCLIC QUEUE

In this section we will study the process 2 = {2(t);t > 0}
and obtain the limiting distribution of 2(t) as t + = for
the gqueueing network of Section 1 with N = 2,

2.1 Preliminaries

We define here three sequences which will be needed
in the analysis. For concreteness we will always assums that.
2(0) = 0. Let *(Tn} . be the increasing sequence of arrival and
departure times for server 1 that incliudes all departure times

i
1
!




. and those arrival times at server 1 that occur when server 1
is idle. Let Yn be the number of customers both waiting
and being served just after time Tn' More precisely put
Yo = Z2(0) = 0 and TO = 0 and define Yn’ Tn’ n>1,
recursively as follows. If Y = 0, let

(2.1) T = inf{t > Tn:z(t) =1}, Y = Z(T

n+l 0) =1.

n+l n+1+

If Yn > 0, let

(2.2) Toe1l = inf{t > Tn:z(t) < Z(t-)} , Y o1 = z(rn+l+0) .
For example, since 2Z(0) = 0, Tl is the time of the first
arrival of a customer to server 1 and Yl is the number of
customers at server 1 just after time Tl which must be 1;

Tz is the time of completion of the first service for server 1

and Y, is the number of customers both waiting and being

E a
P
b
¢
2
3
i
L
3
E
]
i

served at server 1 just after time ng the number could be
¢ or 1. 1In general, if Y > 0, then Th+l is the time of
completion of the next service for server 1 after time Tn
and Yn+1 is the number of customers both waiting and being
served at server 1 just after time Tn+1. 1t Yn = 0, then

'n*l is the time of the next arrival to server 1 and Yn+1 =],

Note that since we are considering the case in which N = 2,

Y, can only take the values 0 and 1.

Let Ah denote the autoregressive part of the next
service to be completed after time Eh. More precisely, put
Ly = 0 and recursively define I, ., = inf{n > Ly Y, = 0};

5




L, is the index of the kth time that Y = 0. Then since
2(0) =0, Ay =A,, A, =X, and A =X , , for
L{k) < n < L(k+l).

Since the service times at server 1 are dependent random
variables, the dependence of {Z(t); t > Tn} on {z(t); t < Tn}
is not only through Yn but also through the service times that
were completed before time Tn' However, by (1.1) and (1.2),
{z(t); £ > T} is conditionally independent of {Z(t); t < T }
given (An,Yn). Further {(An,Yn)} is a discrete time Markov
process with state space (lg_x {o,1}, o(§+ x {0,1})) where

R, = [0,=], R

+ + denotes the Borel subsets of m+ and

o(B, x {0,1}) denotes the product o-algebra generated by R,
and the subsets of {0,1}.
Let

€B, Y ., = len =x, Y =i}

n

Pij(x'B) = P{An+1

and P(x,B) be the matrix whose i,j entry is Pij(x'B)
for i, j € {0,1}, x ¢ R, and B ¢ R.. The transition
probabilities, Pij(x,n) are eagily derived. 1If Y, = o,
then Toey 18 the time of the next arrival after time T,
and hence Yoe1 1l and An+1 =A,. If Y, = 1 and there is
an arrival during the service time Tn s Tn, then YM]_ = 1;
if there is no arrival during the service time Tn+1 - Tn'
then Yoe1 * 0. Since {xn} is an EARMA(1,1) process and
{sn} is a sequence of independent exponential random variables
with mean ™! we have the following matrix

6
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0 J:)

(2.3) P(x,B) =

= - 1 =
Ele ;AleBle-xl E[l-e ,Aleale x]

where Gx(B) is 1 if x € B and 0 otherwise.

We will now define other processes related to {An,Yn,Tn}
which will also be used in the analysis. For 'I‘n <t < Tn+1'
let Y(t) =Y _ , A(t) = An' and U(t) = t-T_. Note that 2z(t)=0

n n

if and only if Y(t) = 0; 2(t) =1 if and only if ¥Y(t) =1
and there is no arrival at server 1 in the time interval
(t-U(t),t); and 2Z(t) = 2 1if and only if Y(t) = 1 and there
is an arrival in the interval (t-U(t),t]. Hence the limiting
behavior of 2Z(t) as t + «» is related to that of
(A(t),Y(t),U(t)). Furthermore, the limiting behavior of
(A(t),¥Y(t) ,U(t)) depends on that of (An,Yn). As a result,
we will first compute the limiting distribution of (An,Yn);
then use it to compute the limiting distribution of

(A(t) ,Y(t),U(t)); and finally compute the limiting distribution
of Z(t) as t +» =,

2.2 Limiting Properties of (Ah,Yn).

Fix a Borel subset B of R + with positive lLebesgue

measure. Prom (1.2) it follows that {A,} is a discrete time H

Markov process. To show that the process is recurrent note that

expression (6.2) of Jacobs and Lewis (1977] for the kth order

transition probability o~ of {A_} implies that for each |
7
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b>0 and 0 < §'< [ re""* ax there exists a k such that

inf o(x,B) > & .
x € [0,b]
Hence

P(U {A €B}A, =x)>6, x € R
m=1 '

Therefore, by Proposition (5.1) of Orey [1971]
P(A,_ € B infinitely oftenle = x) =1

for all x and thus {An} is recurrent with respect to
Lebesgue measure in the sense of Orey [1971, page 4].

Since the service times for server 2 are independent
with common exponential distribution, a similar argument shows

that
(2.4) P{A_ ¢B, ¥ =] infinitely often | Ay=x, Yosi} =1

for i, j € {0,1}, x € R_. Thus, by Theorem (7.1) of Orey
[{1971] there exists a possibly o-fiuite invariant mealdre'
{nj(B); j=0,1, BE€ B*} for the transition probability 6£
{@a,,)}.

The invariant msasure satisfies the following system
of equations

R S, o s B B AN

o )




W I g,

A

5 g (dx) Po'o(x,B) + g wl(dx) pl'o(x,n) = n,(B)

{no(dﬂ PO,I(X’B) +£ “l(dx) Pl,l(x'n) = "1(3) .

Rewriting the two equations using the matrix (2.3) yields

@ -ux
(2.5) g w, (dx)Ele

1, Al ¢ Blaj=x] = w,(B)

uxl

(2.6) m,(B) + g T, (dx) E[1l - e Ay € B|A,=x] = 7, (B) .

Substituting the expression for wo(B) from (2.5)
into (2.6), equation (2.6) becomes

(2.7 é m,(dx) P(A, € B|Aj=x) = . (B) .

By the result after (6.2) in Jacobs and Lewis [1977], equation
(2.7) implies that

(2.8) ",(8) =c [ 2N qy
B

for any non-negative constant c. Substituting the expression

for L1 into (2.5) we have

{




. - ux :
h" (2.9) Ty(B) =c [ re X gre 1, A, € B|A,=x]) ax . i
0

We now want to choose ¢ 80 that w is a probability and

hence wi(B) = 11”5-»QP{An € B, Yn-i}. To this end we set

-y
(]

nl(R+) + wo(R+ )

=cll+ ] 2™ Ee l|a=x] ax]
0

cll + A+t

]

since, if AO has an exponential distribution with mean A'l,

i, so does X,. It now follows that ¢ = (x+u)(2x+u)'1.
This result will be used in the next subsection to compute the
limiting distribution of (A(t),Y(t),U(t)).

2.3 Limiting Properties of an Imbedded Semi-Markov Process

8ince {(Ah.Yn),Tn} is a Markov renewal process in the i

sense of Cinlar [1975], {I[A(t),¥(t),0(t));t > 0} is a Markov
process. Hence, {(A(t),Y(t));t > 0} is a semi-Markov process ;
of the second type in the sense of Jacod [1973]. We will use |
the results of Jacod [1973]) to aoupuée the limiting distribution
of (A(t),Y(t),U(t)) as t + » which will then be used to
compute the limiting distribution of 3B(t).

Since {e;} and (8 } are independent sequences of

independent exponential variables, the process {A(t),¥Y(t))
is right continuous with left hand limits satisfying the
10 '




" hypothesis R-3 on page 85 of Jacod [1973] concerning the set

of discontinuity points of (A(t),Y(t)). Furthermore,
{(A(t),¥(t)):t > 0} is recurrent in the sense that, if
Be¢pR, has positive Lebesgue measure, then

P{ {,]{j}ov(s) 1pA(8)ds = =|A) = x, ¥, = i} = 1

for i, j € {0,1} and x ¢ R, where 1,(x) is 1 if x € B
and 0 otherwise. Therefore, Theorem III-10 on page 103 of
Jacod [1973] applies to show that

P (2.100  vo(BxC) = [ my(am [ e 1(x) 1 (s)as
§ (2.11) v;(BxC) = 4 g 7, (dx) g P{x,> 8|A0=x} 1p(x) 1.(s)as,

B, C € B, is an invariant measure for the transition function
of the Markov process {(A(t),¥(t),U(t));t > 0} for any
a>0.

We will now choose 4 80 that Vyr i=0,1, is a prob-
ability. Put |

1=vo(md ¢+ v (mDH =anr ) + a7l

= dclAlur+w) 171 & 271y

11




' (2.12) de = Au(én) (A24apepd) L

and a = Au(A+2p) (WZeapen?) L,

2.4 The Limiting Distribution of Z(t) as t + =

Using (2.10), (2.11), and (2.12) we can now compute the
limiting distribution of 2(t), the number of customers both
waiting and being served at queue 1, as ¢t + «. Recall
that we are considering the case N ='2 and, therefore, Z(t)
has the values 0, 1, or 2.

From the argument after (2.3) it follows that

(2.13) lim P{z(t)=0]|2(0)=0} = lim B{¥(t)=0[¥(0)=0} = v, (R?)
t + = N . .
= 2202+ a1

i 7 A

(2.14) 1im P{z(t)=1]2{0)=0} =" Lim Ele WPt} y(t)ui|vioyuo] -

t+o t+o

@ o0 :
[0 ] vitexes) éhe - -

Tt CAP S TIPSR B

L K ~ . e
il o (T s s T

. R o
H - S 4 Fib H ; . - ;
4 ! ; : E

» ’ "} [0

by (2.11) and (2.12); and finally

12 [i




(2.15) lim P{z(t)=2]2(0)=0} = 1im E[(1-e"HU(t)),y(¢)=1|¥(0)=0)

t + o t + @
=202 4 o+ 0371,

Rote that the limiting distribution for the number of
customers waiting or being served by server 1 with EARMA(1,1)
service times is the same as if the service times for server 1
were independent random variables each with an exponential

distribution with mean 1™l

(cf. Gaver and Thompson [1973]).
We feel that this is due to the constraints imposed on the net-
work by having only two customers. This conjecture is shown

i ) to be true by the simulation results of Section 4 where it

b' ] becomes clear that the result is not true if N > 2,

3. THE VIRTUAL WAITING TIME FOR THE CYCLIC QUEUE WITH TWO
CUSTOMERS

In this section we will compute the long run virtual
waiting time for server 1 in the case in which the service
times for server 1 form an EARMA(l,l) process and there are two
customers in the system.

The virtual waiting time for server 1 at time t, W(t),
is the sum of the service times of the customers in queue at
server 1 at time t plus the remaining service time of the
customsr currently being served. To define W(t) more precisely, 1

|

v s . :
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let N(t) = sup{nzra < t}l. If 2Z(t) is 1 or 2, then

Vit) = rN(t)+1 - t is the time from t until the completion
of the current service. If 2Z(t) = 2, then Tn(t)+2' TN(t)+1
is the length of the service time for the customer who arrived
at server 1 in the time interval (t-U(t),t). Hence, the

virtual waiting time at time t is defined formally as

0 if 2(t) =0,
(3.1) W(t) = vit) if 2(t) =1,
vit) + TN(t)+2 - Tﬂ(t)"'l if Z(t)' -2 .

From (3.1) it follows that {(A(t),Y(t),2(t),U(t),V(t),W(t));
t > 0} is a Markov process. Further, the process is recurrent
in the sense of Azéma, Duflo, and Revuz [1969]. Thus by the
ergodic theorem in Section (3.1) of thqt paper, there exists a

constant ﬁ such that

e o e

t
(3.2) W= lin L/ weas
tsotp

P(*|A(0)=x, 2(0)=0)-almost surely and

t i
(3.3) %= lim %ltg W(s)ds| A(0)=x, 2(0)=0]

t+ o

for almost all x. We will use {3.3) ‘to compute W.
Piget, from (3.1) and the argument after (2.3)

14




(3.4) E[W(s) |A(0)=x, 3(0)=0)
= E[v(s)e V(8 y(g)=1|A(0)=x, 2(0)=0]
SELV(8)+(Ty (g 1o = T (a) 427177 (21 1¥(8)=1[A(0) =x, 2(0)=0)

= E{V(s);Y(8)=1|A(0)=x; Z(0)=0]

L) (1-e7¥0(8)) sy (g) 1 |A(0) =x, 2 (0)=0]

+E[ (T

N(s)+2 ~ Th(s)+

We will first compute

t
(3.5) lim L[ E(v(s); Y(8)=1|A(0) = x, Y(0) = 0] ds .
t+=to
Since (A(t),Y(t),u(t))  has a limiting distribution as t + «,
by the proof of Theorem III-10 on page 105 of Jacod [1973],

we have that

¥, (D) = lim P{Y(t)=1, (A(t),U(t),V(t)) € D|A(0)=x,Y(0)=0}

t + » .

exists and equals
' ® ez ® y o
cd ‘ re daz { P{x, ¢ dyle-z} [ dx 1,(z,x,y-x)
0

where D is a Borel subset of 33 . By the ergodic theorem of
Azéma, Duflo and Revuz, (3.5) equals
(3.6) [ u(as,ay.as)s = uOew) A2 17,
=
By (1.1) and (1.2), the second term of (3.4)
15




(3.7 E[(T ~HU(8) ),y (s)=1|A(0)=x, 5(0)=0]

N(s)+2~ Tn(s)n0"®

= EBe “uU(8)), y(s)=1|A(0)=x, Z(0)=0]

N(s)+2(17®

+ (1-BIE[pA(8) (1-e*U(8)); v(g)=1]A(0)=x, 2(0)=0]
+(1-8) (1-p) Eley g 41 (1-¢ 7"V ) ;¥ (a)=1[A(0)=x,2(0)=0].

Since is independent of (¥Y(s),U(s))

eN(s)'l»Z

1 t
(3.8) lim [ Ele

,(1-a7¥U(8)) 1y (g)=1|A(0)=x,5(0)=0) a8
t+=t0

N(s)+

t
[ P{2(8)=2|A(0)=x,Z2(0)=0}ds
0

"l im

t + »

= A

g Lo

= w20 (24?7t

by (2.15) and the previously cited ergodic theorem.
The ergodic theorem also implies that

t
(3.9) 1lim %‘ E(A(s) (1-e~"U(%)) ;v (s)=1|A(0) =x,2(0)=0)as

t+ e

- J vl(d:.dx):(l-o'"x)

2
x,
- cd ‘{’ re" %3 a3 { P(x, > x|Aj=z} (1-e UX) ax

16
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=ca[ "%z az £ [BP{Be, > x}+(1-B)P{Be; > x-2}] (1-e"**)ax
0 .

= (A02eautu?] (+n) (A48 17T

xu (322422048 (2Ap+202-22) + 82 (-2apu-12-22))
by (2.11), (1.1) and (1.2).

We now turn our attention to the computation of

t
1 -uu(s)
(3.10) lim ¢ £ El€g(q)+1 {17 );Y(8)=1|A(0)=x,2(0)=0)ds ,

t + »

is a discrete time Markov process
A

First, note that (An,Yn,snﬂ)

with limiting distribution ¥, (BxC) = =, (B) [, le "Xax for

B, C ¢ §+. Hence, by similar arguments to those in subsection 2.3,
(A(t),Y(t),eN(t)+1,U(t)) has a limiting distribution Vi.
Further, for B, C, D € B,r by Theorem III-10 of Jacod

~ ~ -AX
v, (BxCxD) = df =#,(dz) fie "“dx [ P(x_ > s|A =z, e,=x)ds
1 £ 1 é g 1 0 1
= d {nl(dz) é re” “Tax é(sl(.;,)(Bx)+(1-8)1(".)(Bx+z)}ds

for some constant r by (1.1) and (1.2).
To evaluate d, note that

v, (BxD) = '81(3 x R, x D)
- &w‘nu‘-"'ﬂ'u g'!{xi > s‘lhl-'t} o .

.1752".|;




¥ Hence, from (2.8) ané (2.11), 3 = d, By the ergodic theorem

again, (3.10) equals

(3.11) [ ¥, (az,dx,ds) x(1-e7H%)
3
+

= 0 OZ0ue?) rug) 173 w2 1A (14848%) + p(B+8?) ]

after some simplification.
Putting together (3.3)-(3.11) we obtain after some

simplification

(3.12)  D2apspd) 7L W

3 ‘- pd 4 2u2

+(1-8) 12 [Own) 481 171 IBA (A +w) +82 (A4+) 2)

+p122 (\+u) +8(-222412) =282 (A4w) 2] ) . i

1

Putting y = Au~}, the traffic intensity, (3.12) becomes

(3.13) ¥ = (247) (y2ey41) "1 & (1-8) [(y24y+l) (y41) (y+8)171

x{ (B (y+1) +8% (y+1) 214p [2y (y+1) +8 (-2y2+1)-282 (y+1) 2]).

¥

If 8 =1, then the service times for server 1l are
independent oxponnnhtt}'anadhgkvtt!nhld&“utthi-iina Al ana

(3.14) AW, " (24y) (Y2 opp1) 2




’ ~» ~
as expected in this case. Note that W > wind and, hence,
the positive correlation of the service times increases the

average virtual waiting time. Also there is a 8o such that

for B8 < 8o increasing p increases ﬁ; while for B8 > Bo
increasing op decreases W. The value 80_ is a solution to

the quadratic equation
(3.15) —2(y+1)282 + (-2y+1)B + 2y(y+1) = 0

and hence depends on the traffic intensity v .
To give an idea of the effect of different g8 and o
on W we give Table 1 whose entries are differences between W
~
and wind for various values of B and p for x=u==1(ﬁind=1

in this case).

p\B 0 .1 3 .5 .7 .9
) o .03 .09 .11 .10 .04
.1 .05 .07 .10 .11 .09 .04
.3 .15 .15 14 .12 .08 .03
s | .28 .23 18 .13 .08 .03
g | . .30 .21 .13 .07 .02

N T .38 .25 .14 .06 .01

TARLE 1. Values of ﬁ-im, for the case A = y = 1,

19




PRERSSWREE e eI

Note that it is the autoregressive part of the EARMA(l,l)
service time that causes the most change in W. As expected,
for B small W increases with increasing p; for B8 large
w decreases with increasing p; the value at which the change

occurs, 80' is .55 in this case.

4. THE CYCLIC QUEUE WITH A FINITE NUMBER OF CUSTOMERS

In this section we will study the queueing network of
Section 1 in the case in which there are N > 3 customers. We
will use without mention previous notation adapted to the
present case. As before, we are interested in the limiting '
distribution as t + * of 2(t), the number of customers either
waiting or being served at server 1 at time t. Again, we first
consider the discrete time Markov process {(Ah,Yn)} which now
has state space (R, x {0,1,...,N-1}, o (B, X {0,1,...,N-1}))
where o (B, x {0,1v,...,N-1}) denotes the product o-algebra
of the Borel subut':s of R, and the subsets of {0,1,...,N-1}.
Let P, (x,B) = P{A ., €B, Y ,=d|A =x, ¥ =i} for B € B,
x€R ,and i, 3 € {0,1,...,N-1}. If P(x,B) denotes the
matrix whose (i,j)-entry is Pij(x,n), then it is not hard to
show that

20




r ] 5x(a) 0 0 0 T

| by (x,B) b, (x,B) b,(x,B) by_,(x,B) ay_;(x,B)
0 bo(x,B) b, (x,B) bN-3 (x,B) ay_,(x,B)
P(X,B) = . . . . . . .

[ o 0 o .. ... }
where
--ux1 (uxl)k
b, (x,B) =E |e —xT— A € B{Aoex
and

a (x,B) = } b _(x,B) .
k nek D ’
By similar methods to those of subsection 2.2 one can show
that there exists a possibly o-finite invariant measure for P

which satisfies the following system of equations for B ¢ R,

(4.1) £ v, (dx) by (x,B) =¥ (B)

(4.2) [ wo(dx)éx(3)+£ nl(dx)bl(x,n)+£ 7, (dx)b, (x,B)=n, (B)
(]

a




———
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) T

(4.3) [ m) (@x)b, (x,B)+ [ m,(ax)b, (x,B)+ g n3(dx)b°(x,a)-n2(ai
0 0

(¢.4) [ nl(dx)aN_l(x,B)+fn2(dx)an_z(x,n)+---+g-wN_l(dx)al(x.B)-wN_l(B).
0 0

Substituting the expression for no(B) of (4.1) into (4.2)"
and then adding all the equations except (4.1) together yields

the egquation

£ [1[ +°--+1|‘ 1] (dx) P{Alf BlAO‘X} = [Tfl""" +"'+"N_1] (B) .

2

By the result after (6.2) of Jacobs and Lewis [1977) we have

fry 4eoot me 11(B) = c £ A0~ % gy
for any constant c'. Hence, we can and will choose c¢' so
that the invariant measure = is a probability.- ‘

We will now consider the limiting distribution of Z(t)
as t + o, Let K(t) be the nuubor of sorviot conplctionu by
server 2 in thc tinn intorvnl &t - U(t) tl Since the servioe
times of server 2 are independent each with the same exponential
distribution {(A(t),Y(t),U(t),K(t))st > 0} is a Markov process.
Note that {2(t)=0} = {Y(t)=0)};




' i
” {zZ(t)=i} = U {Y(t)=k,K(t)=i-k} , 0 <1i <N;
k=1

N-1

{Z(t)=N} = U1 {Y(t)=k,K(t)=N-k} .
k=

Thus, using the techniques of subsections 2.3 and 2.4 one can

show that
v v(0) = 1lim P{Z(t)=0|Z(0)=0,A(0)=0} = au” 1r (lt ) :
i t » w
V(N) = 1lim P{Z(t)=N|2(0)=0,A(0)=0}
t +

= ° - N -us (us)3 .
k-1£ wk(dy)(l’ P{X1>IIAI vy} ] e =31 as;

j=N-k
)
and *
t + o i
; [ ]
=3 2 w(dy)f P{x, >-A.y}.us(s) ds
oy | .

for some positive constant 4.

It seems difficult to solve (4.1)~(4.4) for o
i=0,...,A-1. Hence, we are unable to obtain explicit expressions
for the limiting dutribution of E(t) as t + » as we could in
the cnu N=2. We wi.n, hovcnr. give some luuhtjon results
to tndiuto m lmung bolavlor of I(t) as t + = for luqlut
values of N. . L

The :\uuai:? '? tnua on e» uuovu' ebmmem, .

ltacn “the service cillc of server 2 .l. independent and exponentially
a3




"§~ distributed {(A(t),Y(t),U(t),Z(¢t));t > 0} is a Markov process
that satisfies the hypotheses of the ergodic theorem of Azéma,

Duflo and Revuz [1969]. Hence,

t
tlim°° % g 1(;)°2(s)ds = v(i) , . im=0,...,N

almost surely P(-|A(0)=x, 2(0)=0). Further, if Ty is the

time of completion of the Mth service time for server 1, then,

since Ty > © as M + @ almost surely with respect to

P(-|A(0)=x,2(0)=0)

T
M
——l . = .
(5.5) Mlimo_r” [ 1;4y°%(s)as = v(i), i =0,....,N

almost surely with respect to the same probability.

The following results are from a simulation designed
by Professor P. A. W. Lewis ;t the Naval Postgraduate School,
Monterey, California for a closed queueing network having
EARMA(1,1) service times. The simulation we used consists of

the computation of

! , . 1 M, i , o
| (5.6) » | 1 g; ;filtfi-’d.,,

for M equal to tho sooom ntvico tm 'rh- ooapunti.o:g wu

repeated for 100 indcpondcnt :opl:l.catiom am_l tho uq:l.c m ,
3 X s R w ‘
and’ variafice over the 100 ropncattm wcro oomtod. ux

»
Luns were pottomd on an IBM system 360/67 ter at

kS 9 Hﬂii.i;“t“[ .
2 odr at Besed b solislemis 2%

Naval ’hctq:uauatn ﬁchoax uoing the LLRANDOM . (&olmueuth
R TR R E T . I mt% § aevios o e¥Ali SOfwis® wid SousE

NikALT
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and Lewis [1973)) which generates numbers according to the
scheme given by Lewis, Goodman, and Miller [1969] and
exponentially distributed random numbers using the Marsaglia
"rectangle-wedge-tail” method. Tests of the random number
generator are given in Learmonth and Lewis !1974].

Table 2 gives the results of a simulation of the queueing
network for the case N=5 and A=y=l, The entries in the table
are the sample means of (5.6) over the independent replications
for different values of B and p. The numbers in the
parentheses are estimates of the standard deviations of the
estimate of v(i). For comparison, note that the limiting
distribution in the case in which server 1 has independent

exponential service times and J\=u=1 is

(5.7) tlim P{Z(t)=i} = 1/6 = 0.1666, i=0,...,5,
+ ®

(cf. Gaver and Thompson [1973]). This corresponds to the case
B=0, p=0 in the first line of the table. .

Note that again it is the autogressive part of the
service times that causes most of the change in the estimates
for the limiting distribution of 2(t) as t + « ., The
positively correlated service times increase the probabilities
of server 1 or server 2 being idle; they also increase the
probability of all customers being in one or the other service
center. This seems to be due to the fact that, if o is large
and £ 4is small, then having a large service time at one time

as




B=.7 p=0
1
5
.9

B=.9 p=0

.5

i 0 1 2 3 4 5
.17(.009) .17(.007) .17(.005) .17(.006) ..17(.007) .17(.009)
.18(.01) .16(.007) .16(.005) .15(.005) .17(.007) .17(.01)
.21(.01) .13(.006) .12(.006) .12(.005) .18(.007) .21(.01)
.26(.02) .11(.01) .079(.006) .088(.006) .20(.01) .26(.03)
.17(.01) .16(.008) .16(.005) .16(.005) .17(.007) .17(.01)
.18(.01) .16(.008) .16(.005) .15(.005) .17(.007) .17(.01)
.21(.01) .15(.007) .13(.006) .13(.005) .18(.007) .20(.01)
.25(.02)  .13(.01) .092(.006) .10(.005) .18(.01) .25(.03)
.18(.01) .17(.007) .16(.005) .15(.006) .16(.007) .18(.01)
.18(.01) .17(.007) .16(.005) .15(.006) .16(.007) .18(.01)
.19(.01)  .17(.007) .15(.006) .15(.006) .16(.007) .18(.01)
.20(.02) .16(.01) .14(.007) .14(.006) .16(.01) .20(.02)
.18(.01) .17(.007) .16(.005) .15(.005) .16(.007) .18(.01)
.18(.01) .17(.007) .16(.005) .15(.006) .16(.007) .18(.01)
.18(.01)  .17(.008) .16(.005) .15(.006) .16(.008) .18(.01)
.18(.01) .17(.009) .16(.006) .16(.006) .16(.009) .17(.01)
.17¢.01) .17(.007) .16(.005) .16(.006) .16(.007) .17(.01)
.17(.01)  .17(.007) .16(.005) .16(.007) .16(.007) .17(.01)
.17(.01) .17(.007) .16(.005) .16(.006) .16(.008) .17(.01)
.17¢.01) .17(.008) .17(.005) .16(.006) .16(.008) .17(.01)

TABLE 2. Estimates for the limiting distribution for the number of customers
in queue for N=5 customers and A=inl when server 1 has EARMA(1,1)
service times and server 2 has iudepéndent exponsntial service times.

a6
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; implies that the service times will tend to be large for a

"ﬁ; while; having a small service time implies that the service
times will tend to be small for a while., The dependent service
times appear to have little effect on the long run average
number of customers that are waiting or being served at server 1;
the average is 2.5 for all values of (B,p) .except the values
(0,.9), (.1,.5), and (.1,.9) for which it is 2.6. This
invariance reflects the fact that the change in the limiting
distribution {v(i)} due to the dependence is somewhat
symmetric in 1i.

Finally, we present in Table 3 the results of a simulation
to investigate what happens if the service times of both servers
are independent EARMA(1,1) processes. In that simulation
tne number of customers N is 5 and the parameters for the

; EARMA(l1,l) service times for server 1 are B1 = .1 and P = .9.

The parameters 8 and Py for the EARMA(1,1) service times

2
for server 2 are allowed to take on several values. The
expression (5.6) is computed for M = 10,000 for 750 independent
realizations. The entries in the table are the values for this

simulation of the same quantities as in Table 2.

i ' 0 1 2 3 4 S
Bz-.l, =0 +349(.02) .130(.006) .090(.004) .100(.004) .182(.008) .249(.016)

Bz-.lo 92-.5 .265(.017) .142(.007) .079(.003) .006(.004) .164(.007) .265(.017)
lzﬂ.lo py=-9 .290(.021) .149(.009) .060(.004) .060(.004) .150(.000) .290(.021)

TABLE 3. Estimates of the limiting distribution for the number
of customsrs in queue for W=S customers and \eys=],
The two sequences of servioe times are independent
EARMA(1,1) processes.

27

ft = g i g . - B L TR I S g - T TA e N
N i i oo . R (AR ! S PRl AN ey Ty
o B Y Py

St - e - " . a




"p Note that the positive correlation of both sequences of

service times tends to make the probability of server 1 being

idle and the probability of all customers being at server 1
larger than when only one sequence of service times is
positively correlated. The change in the limiting distribution
v(i) is again somewhat symmetric in i. Thé long run average
number of customers waiting or being served at server 1 is

2.5 if g, = .1, Py = .9 and 2.6 for the other values of
(B5.p5y) .

It is clear from both simulations that the limiting
distribution for number of customers at server 1 is quite
sengitive to serial correlation in the service times. The
f simulations indicate that perhaps v(0) = v(5) in the case

A=yu=1. It can in fact be shown that in general

Afl - v(0)] = u(l - v(N)].

5. CONCLUSIONS | ' |

In this paper we considered one scheme for using EARMA
processes to model dependence in queues. We find that the
introduction of dependence does affect the limiting behavior
of the gqueue. There are, of course, many other schemes and
some of these will be considesed elsewhere. Two advantages
‘of weing the EARMA processes ia quepes are the ease of iatro-
ducing dependence in the quews and the esse of simmlating
the psooesses. The major drawback to using EARMA processes
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in queues is the difficulty of obtaining the exact analytic
results. It is expected, therefore, that approximation
techniques and simulation will be of major importance in

analysing these gueues.
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